首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   773篇
  免费   65篇
  2023年   9篇
  2021年   39篇
  2020年   12篇
  2019年   13篇
  2018年   22篇
  2017年   23篇
  2016年   25篇
  2015年   29篇
  2014年   35篇
  2013年   53篇
  2012年   65篇
  2011年   53篇
  2010年   31篇
  2009年   33篇
  2008年   33篇
  2007年   44篇
  2006年   44篇
  2005年   31篇
  2004年   28篇
  2003年   28篇
  2002年   35篇
  2001年   16篇
  2000年   5篇
  1999年   9篇
  1998年   6篇
  1997年   6篇
  1995年   6篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1990年   7篇
  1989年   5篇
  1988年   8篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   8篇
  1981年   4篇
  1980年   2篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1971年   3篇
  1969年   4篇
  1968年   4篇
  1967年   3篇
排序方式: 共有838条查询结果,搜索用时 15 毫秒
51.
Genomewide linkage searches aimed at identifying disease susceptibility loci are generally conducted using 300–400 microsatellite markers. Genotyping bi-allelic single nucleotide polymorphisms (SNPs) provides an alternative strategy. The availability of dense SNP maps coupled with recent technological developments in highly paralleled SNP genotyping makes it practical to now consider the use of these markers for whole-genome genetic linkage analyses. Here, we report the findings from three successful genomewide linkage analyses of families segregating autosomal recessively inherited neonatal diabetes, craniosynostosis and dominantly inherited renal dysplasia using the Affymetrix 10K SNP array. A single locus was identified for each disease state, two of which are novel. The performance of the SNP array, both in terms of efficiency and precision, indicates that such platforms will become the dominant technology for performing genomewide linkage searches.  相似文献   
52.
53.
54.
Voltage-gated calcium channels couple changes in membrane potential to neuronal functions regulated by calcium, including neurotransmitter release. Here we report that presynaptic N-type calcium channels not only control neurotransmitter release but also regulate synaptic growth at Drosophila neuromuscular junctions. In a screen for behavioral mutants that disrupt synaptic transmission, an allele of the N-type calcium channel locus (Dmca1A) was identified that caused synaptic undergrowth. The underlying molecular defect was identified as a neutralization of a charged residue in the third S4 voltage sensor. RNA interference reduction of N-type calcium channel expression also reduced synaptic growth. Hypomorphic mutations in syntaxin-1A or n-synaptobrevin, which also disrupt neurotransmitter release, did not affect synapse proliferation at the neuromuscular junction, suggesting calcium entry through presynaptic N-type calcium channels, not neurotransmitter release per se, is important for synaptic growth. The reduced synapse proliferation in Dmca1A mutants is not due to increased synapse retraction but instead reflects a role for calcium influx in synaptic growth mechanisms. These results suggest N-type channels participate in synaptic growth through signaling pathways that are distinct from those that mediate neurotransmitter release. Linking presynaptic voltage-gated calcium entry to downstream calcium-sensitive synaptic growth regulators provides an efficient activity-dependent mechanism for modifying synaptic strength.  相似文献   
55.
Haemophilus influenzae has an absolute requirement for NAD (factor V) because it lacks all biosynthetic enzymes necessary for de novo synthesis of that cofactor. Therefore, growth in vitro requires the presence of NAD itself, NMN, or nicotinamide riboside (NR). To address uptake abilities of these compounds, we investigated outer membrane proteins. By analyzing ompP2 knockout mutants, we found that NAD and NMN uptake was prevented, whereas NR uptake was not. Through investigation of the properties of purified OmpP2 in artificial lipid membrane systems, the substrate specificity of OmpP2 for NAD and NMN was determined, with KS values of approximately 8 and 4mm, respectively, in 0.1 m KCl, whereas no interaction was detected for the nucleoside NR and other purine or pyrimidine nucleotide or nucleoside species. Based on our analysis, we assume that an intrinsic binding site within OmpP2 exists that facilitates diffusion of these compounds across the outer membrane, recognizing carbonyl and exposed phosphate groups. Because OmpP2 was formerly described as a general diffusion porin, an additional property of acting as a facilitator for nicotinamide-based nucleotide transport may have evolved to support and optimize utilization of the essential cofactor sources NAD and NMN in H. influenzae.  相似文献   
56.
Kindler syndrome is an autosomal recessive disorder characterized by neonatal blistering, sun sensitivity, atrophy, abnormal pigmentation, and fragility of the skin. Linkage and homozygosity analysis in an isolated Panamanian cohort and in additional inbred families mapped the gene to 20p12.3. Loss-of-function mutations were identified in the FLJ20116 gene (renamed “KIND1” [encoding kindlin-1]). Kindlin-1 is a human homolog of the Caenorhabditis elegans protein UNC-112, a membrane-associated structural/signaling protein that has been implicated in linking the actin cytoskeleton to the extracellular matrix (ECM). Thus, Kindler syndrome is, to our knowledge, the first skin fragility disorder caused by a defect in actin-ECM linkage, rather than keratin-ECM linkage.  相似文献   
57.
Samuel G  Reeves P 《Carbohydrate research》2003,338(23):2503-2519
The O-antigen is an important component of the outer membrane of Gram-negative bacteria. It is a repeat unit polysaccharide and consists of a number of repeats of an oligosaccharide, the O-unit, which generally has between two and six sugar residues. O-Antigens are extremely variable, the variation lying in the nature, order and linkage of the different sugars within the polysaccharide. The genes involved in O-antigen biosynthesis are generally found on the chromosome as an O-antigen gene cluster, and the structural variation of O-antigens is mirrored by genetic variation seen in these clusters. The genes within the cluster fall into three major groups. The first group is involved in nucleotide sugar biosynthesis. These genes are often found together in the cluster and have a high level of identity. The genes coding for a significant number of nucleotide sugar biosynthesis pathways have been identified and these pathways seem to be conserved in different O-antigen clusters and across a wide range of species. The second group, the glycosyl transferases, is involved in sugar transfer. They are often dispersed throughout the cluster and have low levels of similarity. The third group is the O-antigen processing genes. This review is a summary of the current knowledge on these three groups of genes that comprise the O-antigen gene clusters, focusing on the most extensively studied E. coli and S. enterica gene clusters.  相似文献   
58.
The primary influenza A virus-specific CD8(+)-T-cell responses measured by tetramer staining of spleen, lymph node, and bronchoalveolar lavage (BAL) lymphocyte populations were similar in magnitude for conventional I-A(b+/+) and CD4(+)-T-cell-deficient I-A(b-/-) mice. Comparable levels of virus-specific cytotoxic-T-lymphocyte activity were detected in the inflammatory exudate recovered by BAL following challenge. However, both the size of the memory T-cell pool and the magnitude of the recall response in the lymphoid tissues (but not the BAL specimens) were significantly diminished in mice lacking the CD4(+) subset. Also, the rate of virus elimination from the infected respiratory tract slowed at low virus loads following challenge of na?ve and previously immunized I-A(b-/-) mice. Thus, though the capacity to mediate the CD8(+)-T-cell effector function is broadly preserved in the absence of concurrent CD4(+)-T-cell help, both the maintenance and recall of memory are compromised and the clearance of residual virus is delayed. These findings are consistent with mathematical models that predict virus-host dynamics in this, and other, models of infection.  相似文献   
59.
Helix 3 of the Cry1Aa toxin from Bacillus thuringiensis possesses eight charged amino acids. These residues, with the exception of those involved in intramolecular salt bridges (E90, R93, E112, and R115), were mutated individually either to a neutral or to an oppositely charged amino acid. The mutated genes were expressed, and the resultant, trypsin-activated toxins were assessed for their toxicity to Manduca sexta larvae and their ability to permeabilize M. sexta larval midgut brush border membrane vesicles to KCl, sucrose, raffinose, potassium gluconate, and N-methyl-D-glucamine hydrochloride with a light-scattering assay based on osmotic swelling. Most mutants were considerably less toxic than Cry1Aa. Replacing either E101, E116, E118, or D120 by cysteine, glutamine, or lysine residues had only minor effects on the properties of the pores formed by the modified toxins. However, half of these mutants (E101C, E101Q, E101K, E116K, E118C, and D120K) had a significantly slower rate of pore formation than Cry1Aa. Mutations at R99 (R99C, R99E, and R99Y) resulted in an almost complete loss of pore-forming ability. These results are consistent with a model in which alpha-helix 3 plays an important role in the mechanism of pore formation without being directly involved in determining the properties of the pores.  相似文献   
60.
SspB dimers bind proteins bearing the ssrA-degradation tag and stimulate their degradation by the ClpXP protease. Here, E. coli SspB is shown to contain a dimeric substrate binding domain of 110-120 N-terminal residues, which binds ssrA-tagged substrates but does not stimulate their degradation. The C-terminal 40-50 residues of SspB are unstructured but are required for SspB to form substrate-delivery complexes with ClpXP. A synthetic peptide containing the 10 C-terminal residues of SspB binds ClpX, stimulates its ATPase activity, and prevents SspB-mediated delivery of GFP-ssrA for ClpXP degradation. This tripartite structure--an ssrA-tag binding and dimerization domain, a flexible linker, and a short peptide module that docks with ClpX--allows SspB to deliver tagged substrates to ClpXP without interfering with their denaturation or degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号